3D Polynomial Transformations
Transformation
Given a coordinate (x,y,z) in the standard file, the coordinates
of the corresponding voxel in the reslice file (x',y',z') are given
by the equations:
First order polynomial (4 coefficients per coordinate)
- x'=kx1+kx2x+kx3y+kx4z
- y'=ky1+ky2x+ky3y+ky4z
- z'=kz1+kz2x+kz3y+kz4z
Second order polynomial (10 coefficients per coordinate)
- x'=kx1+kx2x+kx3y+kx4z
+kx5x2+kx6xy+kx7y2
+kx8xz+kx9yz+kx10z2
- y'=ky1+ky2x+ky3y+ky4z
+ky5x2+ky6xy+ky7y2
+ky8xz+ky9yz+ky10z2
- z'=kz1+kz2x+kz3y+kz4z
+kz5x2+kz6xy+kz7y2
+kz8xz+kz9yz+kz10z2
Third order polynomial (20 coefficients per coordinate)
Fourth order polynomial (35 coefficients per coordinate)
Fifth order polynomial (56 coefficients per coordinate)
Sixth order polynomial (84 coefficients per coordinate)
Seventh order polynomial (120 coefficients per coordinate)
Eighth order polynomial (165 coefficients per coordinate)
Ninth order polynomial (220 coefficients per coordinate)
Tenth order polynomial (286 coefficients per coordinate)
Eleventh order polynomial (364 coefficients per coordinate)
Twelfth order polynomial (455 coefficients per coordinate)
Ordered List of Polynomial Terms
- 1
- x
- y
- z (end of 1st order)
- x2
- xy
- y2
- xz
- yz
- z2 (end of 2nd order)
- x3
- x2y
- xy2
- y3
- x2z
- xyz
- y2z
- xz2
- yz2
- z3 (end of 3rd order)
- x4
- x3y
- x2y2
- xy3
- y4
- x3z
- x2yz
- xy2z
- y3z
- x2z2
- xyz2
- y2z2
- xz3
- yz3
- z4 (end of 4th order)
- x5
- x4y
- x3y2
- x2y3
- xy4
- y5
- x4z
- x3yz
- x2y2z
- xy3z
- y4z
- x3z2
- x2yz2
- xy2z2
- y3z2
- x2z3
- xyz3
- y2z3
- xz4
- yz4
- z5 (end of 5th order)
- x6
- x5y
- x4y2
- x3y3
- x2y4
- xy5
- y6
- x5z
- x4yz
- x3y2z
- x2y3z
- xy4z
- y5z
- x4z2
- x3yz2
- x2y2z2
- xy3z2
- y4z2
- x3z3
- x2yz3
- xy2z3
- y3z3
- x2z4
- xyz4
- y2z4
- xz5
- yz5
- z6 (end of 6th order)
- x7
- x6y
- x5y2
- x4y3
- x3y4
- x2y5
- xy6
- y7
- x6z
- x5yz
- x4y2z
- x3y3z
- x2y4z
- xy5z
- y6z
- x5z2
- x4yz2
- x3y2z2
- x2y3z2
- xy4z2
- y5z2
- x4z3
- x3yz3
- x2y2z3
- xy3z3
- y4z3
- x3z4
- x2yz4
- xy2z4
- y3z4
- x2z5
- xyz5
- y2z5
- xz6
- yz6
- z7 (end of 7th order)
- x8
- x7y
- x6y2
- x5y3
- x4y4
- x3y5
- x2y6
- xy7
- y8
- x7z
- x6yz
- x5y2z
- x4y3z
- x3y4z
- x2y5z
- xy6z
- y7z
- x6z2
- x5yz2
- x4y2z2
- x3y3z2
- x2y4z2
- xy5z2
- y6z2
- x5z3
- x4yz3
- x3y2z3
- x2y3z3
- xy4z3
- y5z3
- x4z4
- x3yz4
- x2y2z4
- xy3z4
- y4z4
- x3z5
- x2yz5
- xy2z5
- y3z5
- x2z6
- xyz6
- y2z6
- xz7
- yz7
- z8 (end of 8th order)
- x9
- x8y
- x7y2
- x6y3
- x5y4
- x4y5
- x3y6
- x2y7
- xy8
- y9
- x8z
- x7yz
- x6y2z
- x5y3z
- x4y4z
- x3y5z
- x2y6z
- xy7z
- y8z
- x7z2
- x6yz2
- x5y2z2
- x4y3z2
- x3y4z2
- x2y5z2
- xy6z2
- y7z2
- x6z3
- x5yz3
- x4y2z3
- x3y3z3
- x2y4z3
- xy5z3
- y6z3
- x5z4
- x4yz4
- x3y2z4
- x2y3z4
- xy4z4
- y5z4
- x4z5
- x3yz5
- x2y2z5
- xy3z5
- y4z5
- x3z6
- x2yz6
- xy2z6
- y3z6
- x2z7
- xyz7
- y2z7
- xz8
- yz8
- z9 (end of 9th order)
- x10
- x9y
- x8y2
- x7y3
- x6y4
- x5y5
- x4y6
- x3y7
- x2y8
- xy9
- y10
- x9z
- x8yz
- x7y2z
- x6y3z
- x5y4z
- x4y5z
- x3y6z
- x2y7z
- xy8z
- y9z
- x8z2
- x7yz2
- x6y2z2
- x5y3z2
- x4y4z2
- x3y5z2
- x2y6z2
- xy7z2
- y8z2
- x7z3
- x6yz3
- x5y2z3
- x4y3z3
- x3y4z3
- x2y5z3
- xy6z3
- y7z3
- x6z4
- x5yz4
- x4y2z4
- x3y3z4
- x2y4z4
- xy5z4
- y6z4
- x5z5
- x4yz5
- x3y2z5
- x2y3z5
- xy4z5
- y5z5
- x4z6
- x3yz6
- x2y2z6
- xy3z6
- y4z6
- x3z7
- x2yz7
- xy2z7
- y3z7
- x2z8
- xyz8
- y2z8
- xz9
- yz9
- z10 (end of 10th order)
- x11
- x10y
- x9y2
- x8y3
- x7y4
- x6y5
- x5y6
- x4y7
- x3y8
- x2y9
- xy10
- y11
- x10z
- x9yz
- x8y2z
- x7y3z
- x6y4z
- x5y5z
- x4y6z
- x3y7z
- x2y8z
- xy9z
- y10z
- x9z2
- x8yz2
- x7y2z2
- x6y3z2
- x5y4z2
- x4y5z2
- x3y6z2
- x2y7z2
- xy8z2
- y9z2
- x8z3
- x7yz3
- x6y2z3
- x5y3z3
- x4y4z3
- x3y5z3
- x2y6z3
- xy7z3
- y8z3
- x7z4
- x6yz4
- x5y2z4
- x4y3z4
- x3y4z4
- x2y5z4
- xy6z4
- y7z4
- x6z5
- x5yz5
- x4y2z5
- x3y3z5
- x2y4z5
- xy5z5
- y6z5
- x5z6
- x4yz6
- x3y2z6
- x2y3z6
- xy4z6
- y5z6
- x4z7
- x3yz7
- x2y2z7
- xy3z7
- y4z7
- x3z8
- x2yz8
- xy2z8
- y3z8
- x2z9
- xyz9
- y2z9
- xz10
- yz10
- z11 (end of 11th order)
- x12
- x11y
- x10y2
- x9y3
- x8y4
- x7y5
- x6y6
- x5y7
- x4y8
- x3y9
- x2y10
- xy11
- y12
- x11z
- x10yz
- x9y2z
- x8y3z
- x7y4z
- x6y5z
- x5y6z
- x4y7z
- x3y8z
- x2y9z
- xy10z
- y11z
- x10z2
- x9yz2
- x8y2z2
- x7y3z2
- x6y4z2
- x5y5z2
- x4y6z2
- x3y7z2
- x2y8z2
- xy9z2
- y10z2
- x9z3
- x8yz3
- x7y2z3
- x6y3z3
- x5y4z3
- x4y5z3
- x3y6z3
- x2y7z3
- xy8z3
- y9z3
- x8z4
- x7yz4
- x6y2z4
- x5y3z4
- x4y4z4
- x3y5z4
- x2y6z4
- xy7z4
- y8z4
- x7z5
- x6yz5
- x5y2z5
- x4y3z5
- x3y4z5
- x2y5z5
- xy6z5
- y7z5
- x6z6
- x5yz6
- x4y2z6
- x3y3z6
- x2y4z6
- xy5z6
- y6z6
- x5z7
- x4yz7
- x3y2z7
- x2y3z7
- xy4z7
- y5z7
- x4z8
- x3yz8
- x2y2z8
- xy3z8
- y4z8
- x3z9
- x2yz9
- xy2z9
- y3z9
- x2z10
- xyz10
- y2z10
- xz11
- yz11
- z12 (end of 12th order)
Representation in initialization files
AIR no longer uses ASCII files to initialize polynomial warps. Instead,
a .warp file can be used to initialize polynomials having
an order one greater than the order of the .warp file
Default initialization
The default initialization for this model was modified in AIR 5.1 to make it
identical to the default for alignlinear even when voxel sizes in the two files
are different
If no initialization .warp file is specified, the default initialization is:
- kx1 =((rx_dim-1) - (sx_dim-1)*(sx_size / rx_size)) / 2
- kx2 =sx_size / rx_size
- ky1 =((ry_dim-1) - (sy_dim-1)*(sy_size / ry_size)) / 2
- ky2 =sy_size / ry_size
- kz1 =((rz_dim-1) - (sz_dim-1)*(sz_size / rz_size)) / 2
- kz2 =sz_size / rz_size
- All other parameters=0
where:
- sx_size is the voxel x size of the standard file
- sy_size is the voxel y size of the standard file
- sz_size is the voxel z size of the standard file
- rx_size is the voxel x size of the reslice file
- ry_size is the voxel y size of the reslice file
- rz_size is the voxel z size of the reslice file
- sx_dim is the x dimension of the standard file
- sy_dim is the y dimension of the standard file
- sz_dim is the z dimension of the standard file
- rx_dim is the x dimension of the reslice file
- ry_dim is the y dimension of the reslice file
- rz_dim is the z dimension of the reslice file
This results in the exact centers of the two files being aligned
to one another.
Modified: July 21, 2002
© 2001-2002 Roger P. Woods,
M.D.(rwoods@ucla.edu)