2D Polynomial Transformations


Transformation

Given a coordinate (x,y) in the standard file, the coordinates of the corresponding voxel in the reslice file (x',y') are given by the equations:

First order polynomial (3 coefficients per coordinate)
Second order polynomial (6 coefficients per coordinate)
Third order polynomial (10 coefficients per coordinate)
Fourth order polynomial (15 coefficients per coordinate)
Fifth order polynomial (21 coefficients per coordinate)
Sixth order polynomial (28 coefficients per coordinate)
Seventh order polynomial (36 coefficients per coordinate)
Eighth order polynomial (45 coefficients per coordinate)
Ninth order polynomial (55 coefficients per coordinate)
Tenth order polynomial (66 coefficients per coordinate)
Eleventh order polynomial (78 coefficients per coordinate)
Twelfth order polynomial (91 coefficients per coordinate)
Ordered List of Polynomial Terms
  1. 1
  2. x
  3. y (end of 1st order)
  4. x2
  5. xy
  6. y2 (end of 2nd order)
  7. x3
  8. x2y
  9. xy2
  10. y3 (end of 3rd order)
  11. x4
  12. x3y
  13. x2y2
  14. xy3
  15. y4 (end of 4th order)
  16. x5
  17. x4y
  18. x3y2
  19. x2y3
  20. xy4
  21. y5 (end of 5th order)
  22. x6
  23. x5y
  24. x4y2
  25. x3y3
  26. x2y4
  27. xy5
  28. y6 (end of 6th order)
  29. x7
  30. x6y
  31. x5y2
  32. x4y3
  33. x3y4
  34. x2y5
  35. xy6
  36. y7 (end of 7th order)
  37. x8
  38. x7y
  39. x6y2
  40. x5y3
  41. x4y4
  42. x3y5
  43. x2y6
  44. xy7
  45. y8 (end of 8th order)
  46. x9
  47. x8y
  48. x7y2
  49. x6y3
  50. x5y4
  51. x4y5
  52. x3y6
  53. x2y7
  54. xy8
  55. y9 (end of 9th order)
  56. x10
  57. x9y
  58. x8y2
  59. x7y3
  60. x6y4
  61. x5y5
  62. x4y6
  63. x3y7
  64. x2y8
  65. xy9
  66. y10 (end of 10th order)
  67. x11
  68. x10y
  69. x9y2
  70. x8y3
  71. x7y4
  72. x6y5
  73. x5y6
  74. x4y7
  75. x3y8
  76. x2y9
  77. xy10
  78. y11 (end of 11th order)
  79. x12
  80. x11y
  81. x10y2
  82. x9y3
  83. x8y4
  84. x7y5
  85. x6y6
  86. x5y7
  87. x4y8
  88. x3y9
  89. x2y10
  90. xy11
  91. y12 (end of 12th order)

Representation in initialization files AIR 5.0

AIR no longer uses ASCII files to initialize polynomial warps. Instead, a .warp file can be used to initialize polynomials having an order one greater than the order of the .warp file


Default initialization

The default initialization for this model was modified in AIR 5.1 to make it identical to the default for alignlinear even when voxel sizes in the two files are different AIR 5.1

If no initialization .warp file is specified, the default initialization is:

where:

This results in the exact centers of the two files being aligned to one another.


Modified: July 21, 2002

© 2001-2002 Roger P. Woods, M.D.(rwoods@ucla.edu)